fbpx

News

 

New Rules to Protect Your Kid’s Noggin

May 25, 2019, Parents Magazine

 
Children bonk their head all the time when they’re wrestling with siblings, playing soccer, and just being clumsy-and it’s easy to worry that a bump could turn into something bigger. After all, more than 800,000 kids in the U.S. get a concussion every year. For the first time, the Centers for Disease Control and Prevention has released specific “return to learn” and “return to play” guidelines for head injuries, based on 25 years of research. One doctor shares the big takeaways.

ALWAYS take any injury beyond a light head bump seiously. A concussion occurs when a bump, blow, or jolt to the head or a hit to the body makes the brain bounce or twist in the skull. This creates chemical changes and can sometimes damage brain cells. “If your child complains of a headache or dizziness, is nauseous or vomiting, appears dazed, or sleeps more or less than usual, it’s time to get a doctor’s evaluation,” says Dennis Cardone, D.O., associate professor of orthopedic surgery and pediatrics and co-director of the NYU Langone Concussion Center. Even toddlers can get a concussion from a tumble, so look for changes in their behavior such as not wanting to nurse or eat or losing interest in toys.

If diagnosed with a concussion, your child will need menlal rest, says Dr. Cardone. That means taking a break from all activities for two to three days, and after that, starting with light aerobic activity. He may need to attend school for only half the day or do little to no homework (he won’t mind this rule!). However, he shouldn’t return to any sports or strenuous activities that have a high risk of falling or contact (think: field hockey, gymnastics, climbing a tree) until he’s been cleared by his doctor, which should be within a few weeks.

Download the original article PDF
 

Brainline Holiday Article Picture
 

15 Tips for Surviving — AND Enjoying — the Holidays with Brain Injury

By BrainLine

Flashing lights. Crowded stores. Loud family gatherings. The holiday season should be joyful, but it can often be overwhelming to someone who is living with brain injury.

If you are living with TBI, share these tips with your friends and family. If someone you love is living with TBI, the tips below can help you plan to make the holiday season happier and more relaxed for all of your friends and family.

These great ideas came from members of BrainLine’s wonderful online community.

  1. Identify — in advance, if possible — a quiet place to go at gatherings if you are feeling overwhelmed. This gives you a chance to take a break and lets your loved ones stay involved in the festivities.
  2. Avoid crowded stores and order gifts online instead.
  3. If you are shopping in stores, remember to make a list in advance and plan your trips on weekdays — either early in the morning or late at night when there are fewer crowds.
  4. Wear a cap with a brim or lightly tinted sunglasses to minimize the glare of bright lights in stores or flashing lights on a tree.
  5. Wear noise-reducing headphones or earbuds. These are also great gift ideas for loved ones with TBI if they don’t already have them.
  6. Ask a friend to go with you to stores or holiday parties. They can help you navigate crowds and anxiety-producing situations.
  7. Plan in advance as much as possible. And ask your hosts what their plans are so you aren’t surprised by anything.
  8. Volunteer to help with the holiday activities that you enjoy the most and are least stressful for you.
  9. Remember to ask for help and accept help if it is offered to you.
  10. Ask someone you trust to help you with a budget to avoid overspending on gifts.
  11. Take a nap if you need a break.
  12. Remember that it’s okay to skip the big parties and plan to celebrate in a way that makes you comfortable and happy.
  13. Check in advance to see if fireworks are part of outdoor celebrations — and skip them if they make you uncomfortable.
  14. If flashing lights bother you, ask your friends and family to turn off the flashing feature on Christmas tree lights or other decorations when you visit their homes.
  15. You can let your host know in advance that you may need to leave early. It will help you feel comfortable if you need to get home or to a quiet place and it can also help avoid any hurt feelings.

Read the original article
 

TIAA-CREF Tuition Financing, Inc. also Oversees Treasurer’s ScholarShare Program

August 8, 2018 | Contact:Press Office, news@sto.ca.gov, 916-653-2995

SACRAMENTO – California State Treasurer John Chiang today announced the selection of TIAA-CREF Tuition Financing, Inc. (TFI) to administer the California Achieving a Better Life Experience (CalABLE) Program.

“TFI’s selection means we’re one step closer to turning on CalABLE’s ‘Open for Business’ sign,” said State Treasurer John Chiang. “TFI’s expertise and oversight are a welcome help in reaching Californian’s with disabilities and their families, who will soon be able to save up to $15,000 a year, tax free, without jeopardizing their federal and state assistance.”

Currently, savings for individuals receiving Supplemental Security Income (SSI) or other public benefits have a $2,000 resource limit. Once a beneficiary is determined to have more than this $2,000, their benefits may be suspended until savings fall below that level. CalABLE — the state’s version of the federal ABLE Act — allows people with disabilities to establish a tax-advantaged savings account in which they can save up to $15,000 per year, up to a total of $100,000, without jeopardizing their ability to continue to receive existing public benefits. Earnings into CalABLE accounts are not subject to federal income tax or California state income tax, so long as the earnings are spent on a broad range of disability related expenses.

“We are excited to see the CalABLE program move forward in providing people with disabilities the opportunity to build their futures,” added Christina Mills, executive director of the California Foundation for Independent Living Centers. “There are very few ways for people in our community to save money without penalties. Opening a CalABLE account will be a game-changer for individuals with disabilities, and parents of children with disabilities, who have been limited by programs and services that prevent us from saving and becoming more independent.”

TFI was selected to manage the new CalABLE program by a vote on Tuesday by the CalABLE Act Board, based on the firm’s low costs, proposed investment portfolio that offered simple choices for enrollees with clear preferences, and the simplicity of its program for those new to such a savings program.
TFI is a national leader in providing program management services for college savings plans and currently serves as the manager for California’s successful ScholarShare 529 college savings program.

Any individual whose disability occurred before age 26 is eligible to open a CalABLE account so long as they receive benefits based on disability, such as SSI or Social Security Disability Insurance, or if they have disability certification (including a copy of a diagnosis signed by a physician).

CalABLE participants can:
• Make automatic contributions from a bank account
• Invite family and friends to contribute directly to an account
• Deposit online or by check
• Select from easy to understand investment options

Chiang added, “No one should have to fear losing their disability benefits because they decided to save wisely and invest in their future. This program will help ensure no Californian with a disability will be penalized for thinking ahead.”
CalABLE will launch by the end of 2018.

For more information about CalABLE visit https://www.treasurer.ca.gov/able or call 916-653-1728.

For more news, please follow the Treasurer on Twitter at @CalTreasurer, and on Facebook at California State Treasurer’s Office

With better devices, science can get closer to a more complete picture of how neurons interact for cognitive functionality. (Photo/iStock)

Are we getting closer to a complete brain mapping? New devices explore more regions safely

By Breanne Grady, April 13, 2018, viterbischool.usc.edu

Researchers have developed thin, flexible polymer-based materials that record activity in more subregions of the brain with safer, more specific placement.

Science has yet to unravel a complete understanding of the brain and all its intricate workings. It’s not for lack of effort.

Over many decades, multiple research studies have sought to understand the dizzying “talk,” or interconnectivity, between thousands of microscopic entities in the brain, in particular neurons. The goal: to one day arrive at a complete brain “mapping” — a feat that could unlock tremendous therapeutic potential.

Researchers at the USC Viterbi School of Engineering have developed thin, flexible polymer-based materials for use in microelectrode arrays that record activity more deeply in the brain and with more specific placement than ever before. What’s more is that each microelectrode array is made up of eight “tines,” each with eight microelectrodes which can record from a total 64 subregions of the brain at once.

Same Quality, More Safety

In addition, the polymer-based material, called Parylene C, is less invasive and damaging to surrounding cells and tissue than previous devices comprised of silicon or microwires. However, the long and thin probes can easily buckle upon insertion, making it necessary to add a dissolvable brace made up of polyethylene glycol (PEG) that prevents it from bending.

Professor Ellis Meng of the USC Viterbi Department of Biomedical Engineering said that the performance of the new polymer-based material is on par with microwires in terms of recording fidelity and sensitivity. “The information that we can get out is equivalent, but the damage is much less,” Meng said. “Polymers are gentler on the brain, and because of that, these devices get recordings of neuronal communication over long periods of time.”

As with any prosthetic implant, caution must be exercised in terms of the body’s natural immune response to a foreign element. In addition to inflammation, previous microelectrode brain implants made of silicon or microwires have caused neuronal death and glial scarring, which is damage to connective tissue in the nervous system. However, Parylene C is biocompatible and can be microfabricated in extremely thin form to mold well to specific subregions of the brain, allowing for exploration with minimal damage.

Listening In

So far, these arrays have been used to record synaptic responses of individual neurons within the hippocampus, a part of the brain responsible for memory formation. If injured, the hippocampus may be compromised, resulting in a patient’s inability to form new memories. Meng, a faculty member of the Michelson Center for Convergent Bioscience, said that the polymer-based material can conform to a specific location in the hippocampus and “listen in on a conversation” between neurons. Because there are many such “eavesdroppers” (the microelectrodes), much more information about their interconnectivity can be gleaned.

“I can pick where I want my electrodes to be, so I can match up to the anatomy of the brain,” Meng, the Dwight C. and Hildagarde E. Baum Chair, said. “Along the length of a tine, I can put a group of electrodes here and a group of electrodes there, so if we plant to a certain depth, it’s going to be near the neurons I want to record from.”

Up Next

Future research will determine the recording lifetime of polymer-based arrays and their long-term “signal-to-noise” (SNR) stability. Also, the team plans to create devices with even higher density, including a double-sided microelectrode array with 64 electrodes per tine instead of eight — making for a total of around 4,000 electrodes placed in the brain at once.

In addition to Meng, Professor Ted Berger, the David Packard Chair in Engineering, and Research Professor Dong Song (both of the USC Viterbi School of Engineering) were co-authors along with Ph.D. students Huijing Xu and Ahuva Weltman Hirschberg and post-doctoral scholar Kee Scholten. Funding was provided be the National Science Foundation (NSF) and the National Institutes of Health (NIH). The study titled “Acute in vivo testing of a conformal polymer microelectrode array for multi-region hippocampal recordings” now published in the Journal of Neural Engineering.

About the Michelson Center

The USC Michelson Center for Convergent Bioscience brings together a diverse network of premier scientists and engineers under one roof, thanks to a generous $50 million gift from orthopedic spinal surgeon, inventor and philanthropist Gary K. Michelson, and his wife, Alya Michelson. At the Michelson Center, scientists and engineers from the USC Dornsife College of Letters, Arts and Sciences, USC Viterbi School of Engineering and Keck School of Medicine of USC are working to solve some of the greatest intractable problems of the 21st century in biomedical science, including a fundamentally new understanding of the cell and new approaches for cancer, neurological and cardiovascular disease.

Read the original article
 

New app designed to help survivors of traumatic brain injury recognize and regulate emotions

Indiana University School of Medicine, May 8, 2018

A new app developed by an Indiana University School of Medicine faculty member is designed to help survivors of traumatic brain injuries recognize and regulate their emotions— skills that are critical to maintaining relationships and quality of life but that are often compromised in patients who have endured head traumas.

The app, called My Emotional Compass, is the result of years of research led by Dawn M. Neumann, PhD, associate professor of physical medicine and rehabilitation at IU School of Medicine and research director at the Rehabilitation Hospital of Indiana. It is available on the Apple App Store and the Google Play Store.

Patients with TBI frequently experience damage to regions of the brain and neural networks involved with processing emotions. As a result, many survivors have trouble identifying, labeling and expressing their emotions, a condition known as alexithymia. For example, patients may be unable to articulate that receiving a surprise gift made them feel happy and appreciative, or that being passed over for a promotion left them feeling frustrated and ashamed.

As many as 60 percent of individuals with moderate to severe TBI experience alexithymia, making it challenging to display empathy and respond in a socially appropriate manner in personal and professional relationships. Patients with mild TBI also experience this challenge.

There are no standard, evidenced-based interventions to treat these issues. The app and related research studies led by Neumann aim to begin filling this gap. My Emotional Compass is specifically designed to address alexithymia by helping patients interpret and put words to their own feelings.

“We need to re-teach individuals who have experienced a traumatic brain injury about emotions and give them an emotional vocabulary,” Neumann said. “It might sound simplistic, but the very act of labeling an emotion can help control it.”

In addition to problems with recognizing and labeling personal emotions, many patients with TBI also have difficulty recognizing others’ emotions, interpreting tone of voice, reading facial and physical cues, and responding empathetically to these cues. “You can’t understand what it means that someone else is feeling sad or angry if you don’t recognize those emotions in yourself,” Neumann said.

Because there is an association between recognizing self-emotions and recognizing and responding to others’ emotions, there is a possibility treatments aimed at reducing alexithymia may also improve these other related skills as well.

The app takes users through a series of questions and helps them identify how they are feeling in response to certain scenarios. For example, a user is asked to think of a situation that occurred earlier in the day, then to identify if the experience was pleasant or unpleasant, and to further refine the emotional response in terms of level of emotional charge. (Did the event elicit a strong, moderate or mild emotional arousal?) This ultimately guides the individual to understand the nuances between feelings of anxiety, fear, disgust or anger, for instance.

The app is based on a pilot study led by Neumann at the Rehabilitation Hospital of Indiana that employed the same techniques. It involved patients who, on average, had experienced a traumatic brain injury at least eight years prior. They underwent eight, one-hour emotional awareness training sessions with a research therapist. The results were promising. “We have patients who benefitted tremendously, and the benefits were lasting,” Neumann said.

After the trial, patients were given a laminated piece of paper that reinforced what they learned and served as their Emotional Compass. Neumann sought to make the tool available to a broader audience in a user-friendly format. She selected CreateAbility Concepts, Inc. to help develop the app because of the company’s understanding of this population. It helped transfer Neumann’s manual compass into a highly interactive app through an elaborate series of interviews and mock-ups.

CreateAbility Concepts licensed Neumann’s work through the IU Innovation and Commercialization Office, which protects, markets and licenses intellectual property developed at Indiana University so it can be commercialized by industry.

“This license agreement is a perfect marriage of Dawn Neumann’s outstanding content and CreateAbility Concept’s superior technical know-how,” said David Wilhite, director at ICO. “We are glad to license this intellectual property to an Indiana-based company to bring it to the market.”

Patients are encouraged to use My Emotional Compass in collaboration with a clinician, such as a psychologist or speech language pathologist.

“The inability to recognize and interpret emotions puts a significant strain on relationships and impedes a person’s quality of life, but it is a problem that is often overlooked as clinicians focus on immediate and long-term physical complications of the injury,” Neumann said. “My hope is that this app continues to shine a light on the importance of treating alexithymia and other related conditions and empowers patients by giving them access to an effective, easy-to-use tool.”

Read the original article
 

The Intrepid Spirit traumatic brain injury treatment center is slated to open April 2 at Camp Pendleton. (Courtesy Naval Hospital Camp Pendleton) (Photo/iStock)

Brain injury center to open at Marine base

By Linda McIntosh, March 27, 2018, sandiegouniontribune.com

A brain injury treatment center for military personnel will open its doors April 2 near the Naval Hospital Camp Pendleton.

The $11.5 million Intrepid Spirit center is the seventh of nine such facilities at military bases across the country. It is funded by the New York-based nonprofit Intrepid Fallen Heroes Fund founded in 2000 by Zachary Fisher, who also started the Fisher House Foundation for military families.

The center will operate as a part of Naval Hospital Camp Pendleton to treat active-duty military patients who suffer from the physical and psychological effects of brain injury. The center will also provide education and other resources on brain injury for veterans and the wider community.

The center will expand the hospital’s existing program at the Concussion Care Clinic, which has served more than 2,000 patients since 2014. An estimated 550-600 new patients are expected to be referred to the center each year.

“The facility will offer interdisciplinary, state-of-the-art evaluation of service members using clinical, laboratory and imaging resources to guide treatment,” said Cmdr. Paul Sargent, medical director of the Intrepid Spirit center, Naval Hospital Camp Pendleton.

The center’s specialty rehabilitation and therapy programs will focus on providing service members strategies to improve recovery from physical, emotional and spiritual injuries.

“We know that being able to be close to home, surrounded by loved ones, is a crucial part of the recovery process, so we are opening centers on the West Coast this spring at Camp Pendleton and also at Joint Base Lewis-McChord in Washington in order that service members who need treatment do not have to uproot themselves and their families to get it,” said David Winters, president of the Intrepid Fallen Heroes Fund.

Two teams of clinicians will serve the clinic. Their specialties range from neurology, physical medicine and rehabilitation, psychiatry, trauma psychology, neuropsychology and pain psychology to physical and occupational therapy, creative arts therapy and neuro-optometry.

“Our approach is a broadly collaborative center for preventing, treating and researching head trauma and injury to the brain,” Sargent said.

The Intrepid Spirit center includes research, education and clinical staff from the Defense and Veterans Brain Injury Center, which is part of the Department of Defense’s Health Agency.

“Teaching Marines, sailors and their commands about the risks of head injury, how to mitigate concussions and how to understand Traumatic Brain Injury signs and symptoms, along with how to improve readiness is a major goal of our TBI training,” said Regional Education Coordinator Clint Pearman, a certified brain injury specialist with the Defense and Veterans Brain Injury Center.

Pearman provides outreach, education, training and resources for medical personnel, military commands, service members, veterans and family members and civilian community groups from the Camp Pendleton area up to northern California.

The center’s design is based on the original National Intrepid Center of Excellence, which opened in 2010 at the Walter Reed National Military Medical Center in Bethesda, Md., operated by the Department of Defense.

“There are hundreds of thousands of U.S. service members who continue to suffer from traumatic brian injury and other psychological health conditions,” Winters said. “The Intrepid Fallen Heroes Fund has tried to help these brave men and women get the best care available, so we made it our mission to build nine Intrepid Spirit centers that provide comprehensive, state-of-the-art treatment.”

The clinic’s ground breaking was last May and a grand opening ceremony will be held at 11 a.m. April 4 at the Intrepid Spirit Center.

For information about base access, visit pendleton.marines.mil/About/Base-Information/Base-Access.

Read the original article
 

 

The radial-arm water maze is a common test to assess working memory in rodents.

Memory-enhancing drug reverses effects of traumatic brain injury in mice

By Ryan Cross, Jul. 10, 2017, sciencemag.org

Whether caused by a car accident that slams your head into the dashboard or repeated blows to your cranium from high-contact sports, traumatic brain injury can be permanent. There are no drugs to reverse the cognitive decline and memory loss, and any surgical interventions must be carried out within hours to be effective, according to the current medical wisdom. But a compound previously used to enhance memory in mice may offer hope: Rodents who took it up to a month after a concussion had memory capabilities similar to those that had never been injured.

The study “offers a glimmer of hope for our traumatic brain injury patients,” says Cesario Borlongan, a neuroscientist who studies brain aging and repair at the University of South Florida in Tampa. Borlongan, who reviewed the new paper, notes that its findings are especially important in the clinic, where most rehabilitation focuses on improving motor—not cognitive—function.

Traumatic brain injuries, which cause cell death and inflammation in the brain, affect 2 million Americans each year. But the condition is difficult to study, in part because every fall, concussion, or blow to the head is different. Some result in bleeding and swelling, which must be treated immediately by drilling into the skull to relieve pressure. But under the microscope, even less severe cases appear to trigger an “integrated stress response,” which throws protein synthesis in neurons out of whack and may make long-term memory formation difficult.

In 2013, the lab of Peter Walter, a biochemist at the University of California, San Francisco (UCSF), discovered a compound—called ISRIB—that blocked the stress response in human cells in a dish. Surprisingly, when tested in healthy mice, ISRIB boosted their memory. Wondering whether the drug could also reverse memory impairment, Walter teamed up with UCSF neuroscientist Susanna Rosi to study mouse models of traumatic brain injury. First, they showed that the stress response remains active in the hippocampus, a brain region important for learning and memory, for at least 28 days in injured mice. And they wondered whether administering ISRIB would help.

Rosi and her team first used mechanical pistons to hit anesthetized mice in precise parts of their surgically exposed brains, resulting in contusive injuries, focused blows that can also result from car accidents or being hit with a heavy object. After 4 weeks of rest, Rosi trained the mice to swim through a water maze, where they used cues to remember the location of a hidden resting platform. Healthy mice got better with practice, but the injured ones didn’t improve. However, when the injured mice were given ISRIB 3 days in a row, they were able to solve the maze just as quickly as healthy mice up to a week later, the researchers report today in the Proceedings of the National Academy of Sciences.

“We kept replicating experiments, thinking maybe something went wrong,” Rosi says. So the team decided to study ISRIB in a second model of traumatic brain injury known as a closed head injury, which resembles a concussion from a fall. They again used a mechanical piston, but this time landed a broad blow to the back of the skull. Two weeks later, the mice were trained on a tougher maze, full of bright lights and loud noise. They had to scurry around a tabletop with 40 holes, looking for the one with an escape hatch. Again, while the uninjured mice improved at the task, the concussed mice never got the hang of it. But after four daily doses of ISRIB, the concussed mice performed as well as their healthy counterparts. “This is the most exciting piece of work I’ve ever done, no doubt,” Rosi says.

“Paradigm shift is not too strong a term to use,” says Ramon Diaz-Arrastia, neurologist and director of clinical traumatic brain injury research at the University of Pennsylvania. “This … shows for the first time that a therapy in the chronic period of traumatic brain injury can have pretty potent effects.” Walter agrees. “Normally you would give up on these mice and say nothing can be done here,” he says. “But ISRIB just magically brings the cognitive ability back.”

Still, Borlongan cautions that studies in animals often don’t pan out when tested in humans. He says that this drug has a leg up, though, because it was tested in two models and also readily crosses the blood-brain barrier, which prevents many drugs that look good on paper from entering the brain and having an effect.

If the therapy translates to humans, it could be a boon for soldiers returning from war, who sometimes wait weeks between leaving the battlefield and arriving home for treatment. Brian Head, a neurobiologist at the VA San Diego Healthcare System in California notes that traumatic brain injury is still hard to diagnose, especially with veterans that show up to the clinic long after the injury. “But right now nothing else is working, and giving a compound [that works] a month later is really impressive.”

In 2015, ISRIB was licensed to the secretive Google spinout company Calico, which studies the biology of aging and life span. Walter says his lab has a research agreement with Calico to pursue “basic mechanistic work” on ISRIB, but that the new study was not funded by Calico. Google declined to comment on the new research.

Although the protein target of ISRIB is known, the exact manner in which the drug restores memory is hazy. The team hypothesizes that ISRIB may work by allowing normal protein synthesis—essential for making new neuronal connections and thus forming new memories—to resume, which would otherwise be blunted by the integrated stress response. “Even if this drug doesn’t materialize, other ways of manipulating the integrated stress response may lead to an effective treatment in the future,” Walter says.

Read the original article
 

CARSON, CA – AUGUST 03: Bronze medal winner Dave Mirra speaks in a press conference after the Rally Car race during the summer X Games 14 at Home Depot Center on August 3, 2008 in Carson, California. (Photo by Christian Petersen/Getty Images)

Months after committing suicide, Dave Mirra has become the first action sports athlete to be diagnosed with CTE

by Robert Silverman, vocativ.com (May 24, 2016)
 
After BMX biking legend Dave Mirra committed suicide on February 4 of this year, his wife had his brain tested for chronic traumatic encephalopathy. Sadly, the result came back positive, rife with tau proteins dotting both his temporal and frontal lobes after years of enduring an unknown amount of concussive and sub-concussive trauma. This makes Mirra the first action sports athlete to be diagnosed with CTE.

The neuropathologist went so far as to equate the condition of his brain to that of NFL players and other contact sport athletes that have been posthumously diagnosed with the disease. “I couldn’t tell the difference,” Dr. Lili-Naz Hazrati said.

In an exclusive interview with ESPN: The Magazine, Mirra’s wife Lauren describes the agonizing final weeks of his life, the transformation of his formerly vibrant personality into something different and darker, prone to wild mood swings and unprovoked crying jags or bouts of exhaustion, his mind clouded and wracked with depression.

“I remember seeing him sitting on our bed one day, in the last month of his life,” she said. “I had just gotten out of the shower and saw him hunched over with the blankest lost look. I sat down next to him and held his hand. I said, ‘What is wrong? Are you OK?’ And he just shrugged his shoulders. He couldn’t even speak. He didn’t know. He couldn’t put it into words. He was lost. He was helpless. It was completely different from who he was.”

“He was gone. I could see straight through him,” she continued. “It was the hardest thing to see, looking at someone you love, and you can’t have a conversation with them, and you can see straight through their eyes.”

Lauren Mirra doesn’t know what her exact plans might be for the future, but her overarching hope is that she’ll be able to find a forum in which to speak out, to encourage best practices and prevention measures, without coming across as an ideologue out to ban action sports altogether.

“Through him we have an opportunity to help and change,” she said. “Beauty from ashes. That’s how I will always choose to see it.”

Read the original article
 

 
The Cohen family partners with USC to serve families in Los Angeles.
 
by Lynn Lipinski, tfm.USC.edu (Autumn 2016) — PEACE AFTER WAR can be elusive for combat veterans who fight painful memories long after they’ve left the battlefield. Of the more than 2.6 million men and women who have served in the U.S. military since 9/11, about 20 percent experience some form of post-traumatic stress or brain injury—but nearly half forego treatment, according to the Cohen Veterans Network.

The Steven A. Cohen Military Family Clinic at USC, made possible by a $15.7 million gift from Steven Cohen and the Cohen Veterans Network, offers veterans and their family members free outpatient mental health services and case management. Recently opened in downtown Los Angeles, the Cohen Military Family Clinic at USC is part of a national network of clinics serving veterans and is a collaboration between the USC School of Social Work and the Keck School of Medicine of USC.

Providers will also be stationed at locations throughout the county in areas that otherwise lack these types of services. The clinic will also serve veterans who are ineligible for Veterans’ Admnistration benefits, such as those who served in the National Guard or the Reserves.

“The wounds of war are serious. It is not easy to serve your country in combat overseas and then come back into society seamlessly, especially if you are suffering,” says Cohen, chairman and CEO of Point72 Asset Management. “Veterans have paid an incredible price. It’s important that this country pays back that debt.”

The Cohen Veterans Network plans to create a system of about two dozen centers across the country by 2020 as part of a $275 million initiative to improve access to behavioral health care for recent veterans. Cohen’s support of services for veterans began in part because of a personal connection: His son, Robert, deployed to Afghanistan with the Marines and is currently in the Reserves.

USC’s strong programs for veterans made it a natural fit to host the clinic. The USC School of Social Work is home to the Center for Innovation and Research on Veterans and Military Families, where researchers conducted the first comprehensive study of veterans in L.A. County. Their findings are already helping to create effective services for veterans. The school has also earned national recognition for its pioneering master’s degree in military social work—the only program of its kind offered by a civilian research university.

Read the original article
 

By John Prybys, LAS VEGAS REVIEW-JOURNAL (August 22, 2016) — Randy Dexter and Captain are more than just dog owner and dog. That’s obvious from the way Captain looks for Dexter whenever the Army veteran leaves the room, and the way the Lab mix’s demeanor slips instantly from playful to dead serious once he’s wearing the jacket that denotes his status as a service animal.

Dexter is a retired U.S. Army staff sergeant who did two tours of duty in Iraq. He was diagnosed with both post-traumatic stress disorder and a mild traumatic brain injury, and the story of Dexter and Captain is featured in a new awareness campaign urging veterans and military service people to seek help for traumatic brain injury if they need it.

The campaign, “A Head for the Future,” is sponsored by the Defense and Veterans Brain Injury Center. In his video, Dexter shares the struggles he has experienced coping with his injuries and the reluctance he felt at first to seek help for it.

But, he says, “I was lucky, because when I was in the Army and had my head injury, I was kind of forced to get help.”

Dexter, 34, is a graduate of Green Valley High School who served in the Army for 11 years and had two tours of duty in Iraq. In 2005, Dexter, a combat medic, and his squad were hit by an IED, prompting a long, and continuing, struggle with post-traumatic stress disorder.

Then, after returning home and while still being treated for PTSD and training soldiers bound for Iraq and Afghanistan, Dexter suffered a brain injury during a recreational football game. He’s not sure, even now, what happened. All he knows is that he lost the memory of about 24 hours’ time and, even, of going to the game at all.

X-rays and imaging studies revealed no skull fractures or apparent injuries. But, afterward, Dexter experienced a worsening of already existing problems with his memory, concentration and equilibrium, and began to suffer migraines and severe, debilitating headaches that eventually compounded his PTSD and caused severe depression.

Dr. Scott Livingston, director of education for the Defense and Veterans Brain Injury Center in Silver Springs, Maryland, says symptoms of PTSD and brain injury often can overlap, making diagnosis a challenge. And when a brain injury does occur, he says, it often presents with no obvious symptoms that can be detected by X-ray or imaging scans.

In such cases, the problem likely is “more of a microscopic type of injury within the brain,” Livingston says.

Most civilians probably assume that brain injuries among service people are caused mostly by blasts and blunt-force trauma to the head. Yet, Livingston says, most are caused by motor vehicle collisions, training-related accidents, falls and sports and recreational activities.

Whatever the cause, military personnel are reluctant to report an injury or seek care for it. The current campaign is designed to raise awareness of brain injuries among service people, promote ways to prevent it when possible, and encourage men and women to report it and get it checked out, Livingston says.

“It’s well-known in scientific literature that the earlier someone reports a mild traumatic brain injury and goes to seek help, the better the chances are for better and more complete recovery,” he says.

During his treatment, Dexter participated in a program that paired injured veterans with service dogs. His experience with a dog named Ricochet was so good that he later welcomed the chance to be paired with Captain.

Dexter and Captain are a great team. Dexter says the dog can detect impending anxiety attacks even before he does, and that the dog can serve as a physical shield and protector in such public places as big-box retail stores, which can be particularly unnerving places for those with PTSD.

The true test of Captain’s effectiveness is that the dog has allowed Dexter to significantly reduce the medications he has to take. Today, it would be difficult for someone who doesn’t know the back story to detect Dexter’s struggles with traumatic brain injury, and it was his own previous interest in speaking out publicly about his conditions that led to his participation in the new awareness campaign.

Dexter now attends UNLV, where he’s majoring in communication studies and Spanish. He has been active on the debate teams, will be a peer adviser for other veterans, and hopes to kick off a music show on the university’s HD/internet radio station.

Dexter hopes his video and his story will help to persuade other veterans and active service people to seek out help for PTSD and brain injury. That can be difficult, he notes, because the standard soldier’s stance is that, whatever is happening, “you just deal with it, and that’s true across the whole military culture.”

Read the original article
 

  • 1
  • 2

Serving the Brain Injury Community for 30+ years