fbpx

News

What Is a Neuropsych Evaluation?

By Thomas A. Crosley, Crosley Law

 
Brain injury can deeply impact how you think, make decisions, process information, and interact with others. When someone else caused your injuries, you deserve compensation for these losses.

However, it can be hard to explain or document symptoms like memory loss, poor concentration, or impulsivity. In these cases, neuropsychological testing can help you, your medical team, and your personal injury lawyer understand the full effect of your traumatic brain injury (TBI).

What Is Neuropsychology?

The field of neuropsychology studies how our brains’ health impacts our emotions and behavior. Our brain is a remarkably complex organ, made up of nerves and tissues that help us feel, think, and perform everyday tasks. When there’s neurological dysfunction due to trauma, brain tumors, and diseases like Alzheimer’s, we may experience emotional and intellectual changes. Sometimes, these changes are subtle, like minor memory problems and mental “fogginess.” Other times, neurological issues create profound personality changes, cognitive deficits, and impaired decision-making.

Different parts of the brain serve different functions. For example, the temporal lobe helps with our short-term memory, and the frontal lobe controls our memory, decision-making, and judgment. Depending on the location of your brain injury, you may exhibit different symptoms that affect your thinking, speech, vision, memory, and interpersonal relationships.

A neuropsychological evaluation measures your emotional and cognitive abilities and compares them to the average person of your age, education, and background. An evaluation will typically consider a wide variety of factors, including:

  • Cognitive and intellectual abilities
  • Short-term and long-term memory
  • Executive functioning (your ability to make decisions and interpret information)
  • Speed of processing
  • Concentration and attention
  • Persistence and pace (your ability to finish tasks)
  • Gross and fine motor skills
  • Visual-spatial skills
  • Emotional functioning
  •  
    The evaluator may also look for other possible diagnoses, including depression, anxiety, or post-traumatic stress disorder. Finally, the evaluator will typically assess your performance and symptom validity; this process makes a neuropsych evaluation more objective than some other cognitive and mental assessments.

    Using Neuropsychological Testing to Assess the Impact of Brain Injury: A Case Study

    A neuropsychological report can help your doctors, lawyers, and mental health providers understand the full impact of your brain injury, which allows them to build effective treatment plans and fight to get you the compensation you deserve.

    Let’s look at a real-world example of how a neuropsych examination can help a TBI survivor’s legal claims. I represented a young man with an autism spectrum disorder who was struck by a delivery driver’s car while walking home from his job at a grocery store. During the collision, my client suffered significant brain injury, but the insurance company argued that his cognitive and memory deficits were due to his preexisting autism.

    To fight back, we consulted with his medical providers and a neuropsychologist who helped document his trauma-related symptoms and limitations. After mediation, we settled my client’s TBI claim for a significant amount.

    What Should I Expect During a Neuropsych Evaluation?

    During a neuropsychological evaluation, a team of clinicians, including a trained neuropsychologist, will give you a series of tests that assess your thinking abilities, language skills, memory, mental processing, and other abilities. You can expect to do a variety of tasks, including:

  • Answering questions about your daily routine and symptoms
  • Demonstrating your skills at reading, writing, math, and problem-solving
  • Identifying images
  • Recalling information after a time
  • Drawing pictures
  • Solving puzzles
  •  
    Some tests will be oral, while some will be written, computer-based, or task-driven. The precise tests used during your neuropsychological evaluation will vary depending on your diagnosis and other factors.

    However, not all neuropsychologists focus on brain injuries. A specialist who mainly works with dementia patients or another population might offer as detailed and insightful analysis when evaluating a TBI. If you are selecting a neuropsychologist, make sure they understand and regularly work with people with brain injury.

    How Long Does Neuropsych Testing Take?

    A neuropsych evaluation will take up to eight hours to complete. Typically, you’ll be able to take breaks as needed. If you become too tired or overwhelmed, the evaluator may split the testing over several days.

    What Happens After I Complete My Evaluation?

    Once you’ve completed your testing, the neuropsychologist will review your results, medical records, and other information to create a comprehensive report that discusses your cognitive abilities and limitations. If the neuropsych evaluation was scheduled as part of your TBI care plan, the process will include treatment recommendations and referrals to specialists, like speech therapy and counseling services.

    However, if an insurance company requested your neuropsych evaluation, it might serve a different purpose. Sometimes, “independent medical examinations,” including neuropsychological testing, are used to deny or reduce the value of a TBI survivor’s legal claims.

    For example, the insurance company may argue that your performance validity or symptom validity scores suggest you’re exaggerating symptoms. Rather than recommending treatment that will help you overcome your traumatic brain injury, the report will minimize your symptoms and suggest that you’re malingering (pretending your problems are worse than they are).

    To fight back, you’ll need to work with a personal injury lawyer who can carefully assess the evaluator’s methodology and identify issues and inconsistencies in their report. If you don’t already have an attorney, it’s a good idea to consult with a BIAA Preferred Attorney who has a documented track record of success.

    How Can I Prepare for Neuropsych Testing?

    While you can’t study for a neuropsych examination, there are some simple ways you can prepare for your appointment with the neuropsychologist:

  • Request an up-to-date list of your medications and prescriptions from your pharmacist or doctor
  • Get a good night’s sleep beforehand
  • Take your medications as prescribed
  • Eat a healthy meal before the exam
  • Dress comfortably for your day of testing
  • Wear your glasses or hearing aids, if needed
  •  
    Remember, as long as you are honest and give a good effort, you can’t “fail” a neuropsychological assessment.

    Worried About an Upcoming Neuropsych Evaluation? Consult with a BIAA Preferred Attorney

    If the insurance company schedules a neuropsych evaluation, it’s a good idea to consult with an experienced TBI lawyer. When you work with a BIAA Preferred Attorney, they can help you prepare for your examination, identify issues that may impact your legal claims, and fight back against an insurance company’s negative neuropsychological report.

    To find a TBI lawyer in your community, visit the BIAA Preferred Attorney page and click on “Narrow Your Search.” You’ll be able to filter Preferred Attorneys by their location and practice area.
     

    CLICK HERE to read the original article
     

    Best Practices for Managing Stress and Anxiety During Times of Uncertainty

    By Gary Seale, Ph.D., Regional Director, Centre for Neuro Skills

     
    The COVID-19 outbreak has produced a great deal of uncertainty and unwelcome anxiety. It’s no wonder we feel distressed when our daily routines have been severely disrupted. Due to social distancing and business closures, most people are not able to visit their favorite restaurant, go shopping, or engage in a work-out routine at the fitness center. When you couple this with concerns about personal health, uncertainty about how long these changes will last, and information and directives that change daily, it’s no wonder that many of us feel diseased or anxious. Several credible sites have recently posted simple but effective strategies to manage stress and remain emotionally healthy during this time of uncertainty. Some of the most frequent suggestions by experts at the American Psychological Association, Forbes, the Harvard Business Review, HealthLine, and others include the following:

    Differentiate between what is within your control vs. what is not in your control. Stay focused on the things you can do. Make a list and practice these regularly, and reward yourself for these practices. For example, you can:

  • Wash your hands, cover coughs and sneezes, etc.
  • Limit exposure to news. Manage stress by reducing (or eliminating) the number of times you check in to your favorite media outlet. The American Psychological Association recommends avoiding negative news right before bedtime.
  • Take care of your health (take your vitamins, get enough sleep, hydrate, engage in a daily exercise routine, etc.).
  • Practice your preferred relaxation technique if you feel stressed, such as deep breathing, yoga, mindful meditation, etc. If you don’t have a relaxation practice, now is a great time to develop one.
  •  

    Do the things that help you feel safe, such as:

  • Practice “social distancing” and limit exposure to groups of 10 or more people.
  • Give an “elbow bump” vs. a hug or a handshake.
  • Order out and have food delivered to your home or work; shop on-line and have items delivered to your home vs. going to a store or the mall.
  •  

    Rather than worrying about something that might happen in the future, stay focused on the present; maintain proper perspective.

  • Stay present and in the moment; focus on the task at hand.
  • If you feel yourself “borrowing trouble,” bring yourself back to the present.
  • Use a mindfulness practice (savor a favorite snack or meal; closely observe a pleasing object, such as a flower, etc.). If you don’t have a mindfulness practice, now is a great time to explore/develop one.
  • Put the situation into proper perspective (for example, as of March 24th in Houston/Harris County there are about 206 confirmed/presumed cases of COVID-19 and 2 deaths from this virus. Nineteen have fully recovered. Houston/Harris County has a population of approximately 6+ million. That translates into an infection statistic of 0.003%). Additionally, we live in a time and a nation of great abundance – an abundance of intellectual horsepower (some of the best minds in infectious diseases are here in the U.S. and are working on vaccines for this virus); an abundance of resources (the government has released over a trillion dollars to support research, product development and distribution, and aid to businesses); an abundance of entrepreneurs (companies re-tooling to overproduce cleaning supplies, ventilators, etc.).
  • This situation is temporary. As with other pandemics (MARS, SARS, H1N1, Zika, etc.), this too shall pass.
  •  

    Engage in proven positive psychology practices.

  • Start a gratitude list. Of all the positive emotions, gratitude is one of the most powerful and protective (from depressive symptoms). Simply start a list of all the things you are grateful for, large and small
  • Three Good Things. At the end of the day, list 3 good things that happened during the day. Once you have your list on paper, think about how you made those good things happen and reward yourself
  • Downward comparisons. Rather than thinking or saying to yourself, “I wish I…”, think or say to yourself, “I’m glad I…” For example, “I’m glad I work in the healthcare industry. I have a stable job, and in my work, I am able to help others.”
  • Connect with something larger than yourself. In the example above, you may find yourself feeling compassion for those out of work due to COVID-19, like servers in the restaurant industry. Ordering out from your favorite local restaurant and tipping big may help keep that business open during a time when the restaurant is closed to the public. Or you may want to visit a local blood bank and give blood as most all blood donation activities at large venues, like businesses, churches, etc. have been suspended for the time being.
  •  

    Get outside and enjoy nature.

  • During this time when we are practicing “social distancing”, we may feel “cooped up” which can result in feelings of anxiety. Getting outdoors and enjoying nature can lift your mood and help with managing stress. Walking increases heart rate and respiration, which is good for brain function and overall health. Spending time in the sunlight produces vitamin D, which improves the immune response. Being in “awe” (of nature) is another, very powerful positive emotion that can lift the mood and protect against depressive symptoms.
  •  

    Stay connected and don’t be afraid to ask for help.

  • Take this time to call friends and family and catch up.
  • Talk to a trusted friend about how you are feeling and all the practices you are using to stay healthy, both physically and mentally.
  • If you are feeling particularly distressed, reach out to a counselor or other mental health practitioner.
  • Talk to your supervisor or HR representative about your particular situation and any support you might need.
  •  

    Engage in resilience practices.

  • Think about a time when you faced a challenging situation and overcame it.
  • In your home or office, post some inspirational quotes, for example: “Never, never, never give up.” – Winston Churchill; “Failure is not an option.” – Gene Kranz, NASA Flight Director; “Tough times don’t last, but tough people do.” – Robert Schuller
  • Create a “resilience library” with inspirational books, videos, etc. For example, the book, “Unbroken” by Laura Hillenbrand, or the movie, “Remember the Titans”.
  • When possible, find “positives” (i.e., lower gas prices, safer commutes to work/less drunk drivers on the road, etc.), or lessons learned from the situation.
  • Use humor as appropriate.
  • If you have one, engage in your spiritual practice.
  •  

    CLICK HERE to read the original article
     

    ISRIB molecule—image by the Adam Frost lab at UCSF

    Drug Reverses Age-Related Mental Decline Within Days, Suggesting Lost Cognitive Ability is Not Permanent

    By Good News Network, December 27, 2020

     
    Just a few doses of an experimental drug that reboots protein production in cells can reverse age-related declines in memory and mental flexibility in mice, according to a new study by UC San Francisco scientists.

    The drug, called ISRIB, has already been shown in laboratory studies to restore memory function months after traumatic brain injury (TBI), reverse cognitive impairments in Down Syndrome, prevent noise-related hearing loss, fight certain types of prostate cancer, and even enhance cognition in healthy animals.

    In the new study, published Dec. 1 in the open-access journal eLife, researchers showed rapid restoration of youthful cognitive abilities in aged mice, accompanied by a rejuvenation of brain and immune cells that could help explain improvements in brain function—and with no side effects observed.

    “ISRIB’s extremely rapid effects show for the first time that a significant component of age-related cognitive losses may be caused by a kind of reversible physiological “blockage” rather than more permanent degradation,” said Susanna Rosi, PhD, Lewis and Ruth Cozen Chair II and professor in the departments of Neurological Surgery and of Physical Therapy and Rehabilitation Science.

    “The data suggest that the aged brain has not permanently lost essential cognitive capacities, as was commonly assumed, but rather that these cognitive resources are still there but have been somehow blocked, trapped by a vicious cycle of cellular stress,” added Peter Walter, PhD, a professor in the UCSF Department of Biochemistry and Biophysics and a Howard Hughes Medical Institute investigator. “Our work with ISRIB demonstrates a way to break that cycle and restore cognitive abilities that had become walled off over time.”

    Rebooting cellular protein production holds key to aging

    Walter has won numerous scientific awards, including the Breakthrough, Lasker and Shaw prizes, for his decades-long studies of cellular stress responses. ISRIB, discovered in 2013 in Walter’s lab, works by rebooting cells’ protein production machinery after it gets throttled by one of these stress responses—a cellular quality control mechanism called the integrated stress response (ISR; ISRIB stands for ISR InhiBitor).

    The ISR normally detects problems with protein production in a cell—a potential sign of viral infection or cancer-promoting gene mutations—and responds by putting the brakes on cell’s protein-synthesis machinery. This safety mechanism is critical for weeding out misbehaving cells, but if stuck in the ‘on’ position in a tissue like the brain, it can lead to serious problems, as cells lose the ability to perform their normal activities, according to Walter and colleagues.

    In particular, their recent animal studies have implicated chronic ISR activation in the persistent cognitive and behavioral deficits seen in patients after TBI, by showing that, in mice, brief ISRIB treatment can reboot the ISR and restore normal brain function almost overnight.

    The cognitive deficits in TBI patients are often likened to premature aging, which led Rosi and Walter to wonder if the ISR could also underlie purely age-related cognitive decline. Aging is well known to compromise cellular protein production across the body, as life’s many insults pile up and stressors like chronic inflammation wear away at cells, potentially leading to widespread activation of the ISR.

    “We’ve seen how ISRIB restores cognition in animals with traumatic brain injury, which in many ways is like a sped-up version of age-related cognitive decline,” said Rosi, who is director of neurocognitive research in the UCSF Brain and Spinal Injury Center and a member of the UCSF Weill Institute for Neurosciences. “It may seem like a crazy idea, but asking whether the drug could reverse symptoms of aging itself was just a logical next step.”

    Signature effects of aging disappeared literally overnight

    In the new study, researchers led by Rosi lab postdoc Karen Krukowski, PhD, trained aged animals to escape from a watery maze by finding a hidden platform, a task that is typically hard for older animals to learn. But animals who received small daily doses of ISRIB during the three-day training process were able to accomplish the task as well as youthful mice—and much better than animals of the same age who didn’t receive the drug.

    The researchers then tested how long this cognitive rejuvenation lasted and whether it could generalize to other cognitive skills. Several weeks after the initial ISRIB treatment, they trained the same mice to find their way out of a maze whose exit changed daily—a test of mental flexibility for aged mice who, like humans, tend to get increasingly stuck in their ways. The mice who had received brief ISRIB treatment three weeks before still performed at youthful levels, while untreated mice continued to struggle.

    To understand how ISRIB might be improving brain function, the researchers studied the activity and anatomy of cells in the hippocampus, a brain region with a key role in learning and memory, just one day after giving animals a single dose of ISRIB. They found that common signatures of neuronal aging disappeared literally overnight: neurons’ electrical activity became more sprightly and responsive to stimulation, and cells showed more robust connectivity with cells around them while also showing an ability to form stable connections with one another usually only seen in younger mice.

    The researchers are continuing to study exactly how the ISR disrupts cognition in aging and other conditions and to understand how long ISRIB’s cognitive benefits may last. Among other puzzles raised by the new findings is the discovery that ISRIB also alters the function of the immune system’s T cells, which also are prone to age-related dysfunction. The findings suggest another path by which the drug could be improving cognition in aged animals, and could have implications for diseases from Alzheimer’s to diabetes that have been linked to heightened inflammation caused by an aging immune system.

    “This was very exciting to me because we know that aging has a profound and persistent effect on T cells and that these changes can affect brain function in the hippocampus,” said Rosi. “At the moment, this is just an interesting observation, but it gives us a very exciting set of biological puzzles to solve.”

    Success shows the ‘serendipity’ of basic research

    Rosi and Walter were introduced by neuroscientist Regis Kelly, PhD, executive director of the University of California’s QB3 biotech innovation hub, following Walter’s 2013 study showing that the drug seemed to instantly enhance cognitive abilities in healthy mice. To Rosi, the results from that study implied some walled-off cognitive potential in the brain that the molecule was somehow unlocking, and she wondered if this extra cognitive boost might benefit patients with neurological damage from traumatic brain injury.

    The labs joined forces to study the question in mice, and were astounded by what they found. ISRIB didn’t just make up for some of the cognitive deficits in mice with traumatic brain injury—it erased them. “This had never been seen before,” Rosi said. “The mantra in the field was that brain damage is permanent—irreversible. How could a single treatment with a small molecule make them disappear overnight?”

    Further studies demonstrated that neurons throughout the brains of animals with traumatic brain injury are thoroughly jammed up by the ISR. Using ISRIB to release those brakes lets brain cells immediately get back to their normal business. More recently, studies in animals with very mild repetitive brain injury—akin to pro athletes who experience many mild concussions over many years—showed that ISRIB could reverse increased risk-taking behavior associated with damage to self-control circuits in the frontal cortex.

    “It’s not often that you find a drug candidate that shows so much potential and promise,” Walter says, calling it “just amazing”.

    No side effects

    One might think that interfering with the ISR, a critical cellular safety mechanism, would be sure to have serious side effects, but so far in all their studies, the researchers have observed none. This is likely due to two factors. First, it takes just a few doses of ISRIB to reset unhealthy, chronic ISR activation back to a healthier state. Second, ISRIB has virtually no effect when applied to cells actively employing the ISR in its most powerful form—against an aggressive viral infection, for example.

    ISRIB has been licensed by Calico, a South San Francisco, Calif. company exploring the biology of aging, and the idea of targeting the ISR to treat disease has been picked up by many other pharmaceutical companies, Walter says.

    “It almost seems too good to be true, but with ISRIB we seem to have hit a sweet spot for manipulating the ISR with an ideal therapeutic window,” Walter said.

    Get more links to background studies from original article from UCSF News.
     

    CLICK HERE to read the original article
     

    Pictured is a high-fidelity map of physician-scientist Nico Dosenbach’s brain while his dominant arm was in a cast for two weeks. The red and yellow areas of the MRI image represent previously undetected brain pulses. Dosenbach and colleagues at Washington University School of Medicine in St. Louis found that disuse of an arm causes the affected brain region to disconnect from the rest of the brain’s motor system within two days. However, spontaneous pulses maintain activity in the disused circuits until the region becomes active again when mobility is regained.

     

    Previously undetected brain pulses may help circuits survive disuse, injury

    Research may lead to treatment advances for patients with immobilizing illness, injury

    By Washington University in St. Louis, June 15, 2020

     

    To study brain activity, Nico Dosenbach, MD, PhD, an assistant professor of neurology at Washington University School of Medicine in St. Louis, wore a fiberglass cast for two weeks.

    A neuroscientist’s neon pink arm cast led him and fellow researchers at Washington University School of Medicine in St. Louis to discover previously undetected neuronal pulses in the human brain that activate after an immobilizing illness or injury.

    The pulses appeared on MRI scans used to measure brain activity of the neuroscientist and, later, two additional adults whose arms were in casts. The researchers compared those MRI images with scans of the scientists before and after their arms were put in casts.

    The scans showed that the brain’s main circuits responsible for movement in specific areas of the body disconnected within 48 hours of a person wearing a cast that encumbered movement in such an area. Also during this time, “disuse pulses” emerged to maintain neural activity and allow the main motor circuits to reactivate if and when mobility was restored through physical therapy.

    The findings, published online June 16 in Neuron, offer clues to how the brain’s billions of neurons — cells that transmit nerve impulses — can rewire and restore pathways after injury or illness. Understanding just what is behind this resiliency may lead to new therapies for people with broken limbs or recovering from strokes or other immobilizing conditions.

    “Many scenarios exist in neurology in which a person doesn’t use an arm or a leg and, consequently, related brain circuits for an extended period of time,” said senior author Nico Dosenbach, MD, PhD, an assistant professor of neurology. “In offering the best care to patients, it’s important to understand specifically what changes occur in brain function. Accurate understanding and mapping of these circuits may lead to advancements in treating patients who have lost use of their limbs.”

    In 2015, Dosenbach — also an assistant professor of occupational therapy, of pediatrics, of radiology and of biomedical engineering — wore the pink cast for two weeks despite the fact he had no injury requiring one. He aimed to collect high-quality data using brain-imaging techniques to evaluate neural networks that control movement.

    Many of the patients Dosenbach treats at St. Louis Children’s Hospital suffer from conditions that limit mobility and cause them to favor one side of the body. A common treatment is constraint-induced movement therapy, also known as forced-use therapy, which immobilizes the dominant arm with a cast, forcing the child to use the impaired arm.

    “My goal was a better understanding of what my patients experience during therapy, although I acknowledge it’s more difficult for them because of their disabilities,” Dosenbach said.

    He also wanted to pinpoint a timeline of when individual neural changes occur. Commonly, scientists gather MRI data from dozens of people and average it. “But I did not want to do that because everyone’s brain is anatomically different, and when MRI data are averaged, it all blurs together,” Dosenbach said.

    So Dosenbach decided to wear a fiberglass cast on his dominant, right arm. It stretched from his fingertips to just below his shoulder. It was pink, the favorite color of his daughter, Maike, then age 2.

    He wore it during the hot, humid summer. It itched. It was awkward. He had to learn how to change a diaper with one hand. 

    Every day, he arose predawn to lie stiffly for 30 minutes for a resting-state functional MRI. He did this for the two weeks his arm was in the cast, as well as for the two weeks before and after.

    During the six weeks, Dosenbach also wore accelerometers on both wrists to track the motor strength of his arms while performing basic tasks such as writing and moving objects.

    “It wasn’t terrible, just unpleasant,” Dosenbach recalled. “But immediately, I noticed my right arm got worse, and my left hand got stronger. It was much faster than any of us expected.”

    The MRI data showed that brain changes occurred within 48 hours. Additionally, the researchers measured a decrease in grip strength in his right arm — from 124 pounds of force to 90 during the two weeks he wore the cast.

    “Once my cast was removed, my right hand began to grow stronger,” Dosenbach said. “My left returned to its former role, too.”

    Surprised by such resiliency, Dosenbach and the study’s first author, Dillan Newbold, a MD, PhD student, conducted the same experiment on two “crazy-in-a-good-way” scientists — one who wore a fluorescent yellow cast decorated in doodles, the other a forest green cast that recalled childhood memories of camping.

    Using a resting-state functional MRI scan, the researchers identified and measured the precise regions in each individual’s brain that controlled each casted arm, examining more than 20 hours of recordings for each person. These techniques allowed the researchers to discover and characterize the pulses.

    Their MRI data nearly mirrored Dosenbach’s. The findings indicated that disuse of each arm caused affected neurons to disconnect from the rest of the brain’s motor system within two days. Newbold’s analysis revealed that throughout the time the casts were worn, spontaneous pulses maintained activity in the disused circuits until the neurons began firing again when mobility was regained.

    “Finding the spontaneous pulses was incredible,” Newbold said. “People can be motionless, but their neurons seem to protect the brain from completely disengaging when it’s not being used. More research is needed, but this was the most exciting part of the study because of the clinical implications.”

     

    CLICK HERE to read the original article
     

    Computer Vision Syndrome

     

    Caring for Your Vision with So Much Screen-Time!

    Avoid “Computer Vision Syndrome”

    By Carl Hillier, OD FCOVD

     
    Most of us are engaged in “screen time” more than ever before—using Zoom/Skype/FaceTime as a tele-therapy platform. For many, this can be very successful, but also potentially very visually stressful.

    We recommend the following guidelines to help minimize the following problems associated with excess screen-time—collectively known as “Computer Vision Syndrome”:

    • Cognitive Fatigue
    • Visual Fatigue/Eye Strain
    • Dry Eye Symptoms
    • Blurred Distance Vision
    • Headache
    • Neck and Shoulder Pain
    • Poor-Quality Sleep

     

    Things to do to alleviate the symptoms above:

    • Take scheduled breaks from screen time at least every 30 minutes, walking away from the computer for at least 2 minutes.
    • During these 2 minutes, stand or sit in a very relaxed way and rotate your body without moving your feet—try to look behind you one way, then back to the other way as far as you are able.
    • Check each eye individually during these 2-minute breaks to ensure you are not losing distance vision from either eye.
    • Acquire optical quality lenses that deflect the harmful blue light that emanates from screens. Your optometrist can get the proper protective lenses for you.
    • Research-proven nutritional supplementation solutions:
      • Lutein (10 mg), Zeaxanthin (2 mg) and Mesozeaxanthin (10 mg)—to improve visual performance, sleep quality and decrease adverse physical symptoms
      • Omega-3—Minimum EPA: 400 mg; Minimum DHA: 960 mg
    • Stop screen time 2 hours before going to sleep.
    • Get outside as much as possible!

    If you would like more advice on how to establish a strong visual foundation for the demands of online learning, just let us know. We can provide activities for you to do off-line that will help you maintain good vision while you are on-line!

    Carl G. Hillier, OD FCOVD
    Melissa C. Hillier, OD FCOVD
    San Diego Center For Vision Care
    SanDiegoCenterForVisionCare.com

    CLICK HERE to download the original article
     


    Ayn al Asad Air Base in western Iraq after an Iranian missile attack on Jan. 8. The number of service members experiencing symptoms associated with brain injuries has since topped 100. Photo Credit…Sergey Ponomarev for The New York Times

     

    Brain Injuries Are Common in Battle.
    The Military Has No Reliable Test for Them.

    Traumatic brain injury is a signature wound of the wars in Iraq and Afghanistan. But the military still has no objective way of diagnosing it in the field.

    By Dave Philipps and Thomas Gibbons-Neff for nytimes.com, February 15, 2020

     
    U.S. troops at Ayn al Asad Air Base in western Iraq hunkered down in concrete bunkers last month as Iranian missile strikes rocked the runway, destroying guard towers, hangars and buildings used to fly drones.
    When the dust settled, President Trump and military officials declared that no one had been killed or wounded during the attack. That would soon change.

    A week after the blast, Defense Department officials acknowledged that 11 service members had tested positive for traumatic brain injury, or TBI, and had been evacuated to Kuwait and Germany for more screening. Two weeks after the blast, the Pentagon announced that 34 service members were experiencing symptoms associated with brain injuries, and that an additional seven had been evacuated. By the end of January the number of potential brain injuries had climbed to 50. This week it grew to 109.

    The Defense Department says the numbers are driven by an abundance of caution. It noted that 70 percent of those who tested positive for a TBI had since returned to duty. But experts in the brain injury field said the delayed response and confusion were primarily caused by a problem both the military and civilian world have struggled with for more than a decade: There is no reliable way to determine who has a brain injury and who does not.

    Top military leaders have for years called traumatic brain injury one of the signature wounds of the wars in Iraq and Afghanistan; at the height of the Iraq war in 2008, they started pouring hundreds of millions of dollars into research on detection and treatment. But the military still has no objective tool for diagnosing brain injury in the field. Instead, medical personnel continue to use a paper questionnaire that relies on answers from patients — patients who may have reasons to hide or exaggerate symptoms, or who may be too shaken to answer questions accurately.

    The military has long struggled with how to address so-called invisible war wounds, including traumatic brain injury and post-traumatic stress disorder. Despite big investments in research that have yielded advances in the laboratory, troops on the ground are still being assessed with the same blunt tools that have been in use for generations.

    The problem is not unique to the military. Civilian doctors struggle to accurately assess brain injuries, and still rely on a process that grades the severity of a head injury in part by asking patients a series of questions: Did they black out? Do they have memory problems or dizziness? Are they experiencing irritability or difficulty concentrating?

    “It’s bad, bad, bad. You would never diagnose a heart attack or even a broken bone that way,” said Dr. Jeff Bazarian a professor of emergency medicine at the University of Rochester Medical Center. “And yet we are doing it for an injury to the most complex organ in the body. Here’s how crazy it gets: You are relying on people to report what happened. But the part of the brain most often affected by a traumatic brain injury is memory. We get a lot of false positives and false negatives.”

    Without a good diagnosis, he said, doctors often don’t know whether a patient has a minor concussion that might require a day’s rest, or a life-threatening brain bleed, let alone potential long-term effects like depression and personality disorder.

    At Ayn al Asad, personnel used the same paper questionnaires that field medics used in remote infantry platoons in 2010. Aaron Hepps, who was a Navy corpsman in a Marines infantry company in Afghanistan at that time, said it did not work well then for lesser cases, and the injuries of many Marines may have been missed. During and after his deployment, he counted brain injuries in roughly 350 Marines — about a third of the battalion.

    After the January missile attack, Maj. Robert Hales, one of the top medical providers at the air base, said that the initial tests were “a good start,” but that it took numerous screenings and awareness among the troops to realize that repeated exposure to blast waves during the hourlong missile strikes had affected dozens.

    Traumatic brain injuries are among the most common injuries of the wars in Iraq and Afghanistan, in part because armor to protect from bullet and shrapnel wounds has gotten better, but they offer little protection from the shock waves of explosions. More than 350,000 brain injuries have been reported in the military since 2001.

    The concrete bunkers scattered around bases like Ain al Assad protect from flying shrapnel and debris, but the small quarters can amplify shock waves and lead to head trauma.

    The blasts on Jan. 8, one military official said, were hundreds of times more powerful than the rocket and mortar attacks regularly aimed at U.S. bases, causing at least one concrete wall to collapse atop a bunker with people inside.

    Capt. Geoff Hansen was in a Humvee at Ayn al Asad when the first missile hit, blowing open a door. Then a second missile hit.

    “That kind of blew me back in,” he said. “Blew debris in my face so I went and sat back down a little confused.”

    A tangle of factors make diagnosing head injuries in the military particularly tricky, experts say. Some troops try to hide symptoms so they can stay on duty, or avoid being perceived as weak. Others may play up or even invent symptoms that can make them eligible for the Purple Heart medal or valuable veteran’s education and medical benefits.

    And sometimes commanders suspect troops with legitimate injuries of malingering and force them to return to duty. Pentagon officials said privately this week that some of the injuries from the Jan. 8 incident had probably been exaggerated. Mr. Trump seemed to dismiss the injuries at a news conference in Davos, Switzerland, last month. “I heard they had headaches,” he said. “I don’t consider them very serious injuries relative to other injuries I have seen.”

    In the early years of the war in Iraq, troops with concussions were often given little medical treatment and were not eligible for the Purple Heart. It was only after clearly wounded troops began complaining of poor treatment that Congress got involved and military leaders began pressing for better diagnostic technology.

    Damir Janigro, who directed cerebrovascular research at the Cleveland Clinic for more than a decade, said relying on the questionnaire makes accurate diagnosing extremely difficult.

    “You have the problem of the cheaters, and the problem of the ones who don’t want to be counted,” he said. “But you have a third problem, which is that even if people are being completely honest, you still don’t know who is really injured.”

    In civilian emergency rooms, the uncertainty leads doctors to approve unnecessary CT scans, which can detect bleeding and other damage to the brain, but are expensive and expose patients to radiation. At the same time doctors miss other patients who may need care. In a war zone, bad calls can endanger lives, as troops are either needlessly airlifted or kept in the field when they cannot think straight.

    Mr. Janigro is at work on a possible solution. He and his team have developed a test that uses proteins found in a patient’s saliva to diagnose brain injuries. Other groups are developing a blood test.

    Both tests work on a similar principle. When the brain is hit by a blast wave or a blow to the head, brain cells are stretched and damaged. Those cells then dispose of the damaged parts, which are composed of distinctive proteins. Abnormal levels of those proteins are dumped into the bloodstream, where for several hours they can be detected in both the blood and saliva. Both tests, and another test being developed that measures electrical activity in the brain, were funded in part by federal grants, and have shown strong results in clinical trials. Researchers say they could be approved for use by the F.D.A. in the next few years.

    The saliva test being developed by Mr. Janigro will look a bit like an over-the-counter pregnancy test. Patients with suspected brain injuries would put sensors in their mouths, and within minutes get a message that says that their brain protein levels are normal, or that they should see a doctor.

    But the new generation of testing tools may fall short, said Dr. Gerald Grant, a professor of neurosurgery at Stanford University and a former Air Force lieutenant colonel who frequently treated head injuries while deployed to Iraq in 2005.

    Even sophisticated devices had trouble picking up injuries from roadside bombs, he said.

    “You’d get kids coming in with blast injuries,” he said, “and they clearly had symptoms, but the CT scans would be negative.”

    He was part of an earlier effort to find a definitive blood test, which he said in an interview was “the holy grail.” But progress was slow. The grail was never found, he said, and the tests currently being developed are helpful for triaging cases, but too vague to be revolutionary.

    “Battlefield injuries are complex,” he said. “We still haven’t found the magic biomarker.”

    CLICK HERE to go to the original article
     

     

    What’s the difference between all the different head scans (X-Ray, CT, MRI, MRA, PET scan)? And what do they show in the head?

    Michael S. Tehrani, M.D.Follow Founder & CEO at MedWell Medical

     
    Ever wonder what’s the difference between all the different head scans (xray, CT, MRI, MRA, PET scan) and what they show in the head. Well wonder no more. The Dr. T easy to understand version…

    X-Ray: shows bone/skull only. Does not show the brain. Best used to detect if there are bone fractures.

    CT: a quick test. Shows brain but detail not great. Shows if any larger bleed, stroke, lesions, or masses.

    MRI: a long test. Shows brain and detail is great. Shows smaller bleeds, stroke, lesions, or masses.

    MRA:
    shows the flow of blood in the vasculature system of the brain. If there is vessel narrowing or blockage this test would show it.

    PET scan: shows how active different parts of the brain is. An active brain uses sugar as energy and pet scan detects how much sugar is being used by lighting up and turning different colors. The more sugar being used the more that area will light up and be different in colors. Cancer cells use the most sugar so cancer cells light up the most. PET scan is used to see if there are cancer cells. (Cancer cells replicate at a very fast and uncontrolled rate hence use a lot of sugar to allow that replication hence why they light up so much).

    CLICK HERE to download the original article
     

     

    New Rules to Protect Your Kid’s Noggin

    May 25, 2019, Parents Magazine

     
    Children bonk their head all the time when they’re wrestling with siblings, playing soccer, and just being clumsy-and it’s easy to worry that a bump could turn into something bigger. After all, more than 800,000 kids in the U.S. get a concussion every year. For the first time, the Centers for Disease Control and Prevention has released specific “return to learn” and “return to play” guidelines for head injuries, based on 25 years of research. One doctor shares the big takeaways.

    ALWAYS take any injury beyond a light head bump seiously. A concussion occurs when a bump, blow, or jolt to the head or a hit to the body makes the brain bounce or twist in the skull. This creates chemical changes and can sometimes damage brain cells. “If your child complains of a headache or dizziness, is nauseous or vomiting, appears dazed, or sleeps more or less than usual, it’s time to get a doctor’s evaluation,” says Dennis Cardone, D.O., associate professor of orthopedic surgery and pediatrics and co-director of the NYU Langone Concussion Center. Even toddlers can get a concussion from a tumble, so look for changes in their behavior such as not wanting to nurse or eat or losing interest in toys.

    If diagnosed with a concussion, your child will need menlal rest, says Dr. Cardone. That means taking a break from all activities for two to three days, and after that, starting with light aerobic activity. He may need to attend school for only half the day or do little to no homework (he won’t mind this rule!). However, he shouldn’t return to any sports or strenuous activities that have a high risk of falling or contact (think: field hockey, gymnastics, climbing a tree) until he’s been cleared by his doctor, which should be within a few weeks.

    Download the original article PDF
     

    Libby and Tom Bates // CBS News

    A brain disease best known for impacting football players who suffered concussions is now being found in soldiers

    By Sharyn Alfonsi, September 16, 2018, CBS News

    Until a few years ago, NFL players who struggled with severe depression, bouts of rage and memory loss in their retirement were often told they were just having a hard time adjusting to life away from the game. Doctors have since learned these changes can be symptoms of the degenerative brain disease CTE – chronic traumatic encephalopathy, caused by blows to the head.

    As we first reported in January, CTE isn’t just affecting athletes, but also showing up in our nation’s heroes. Since 9/11 over 300,000 soldiers have returned home with brain injuries. Researchers fear the impact of CTE could cripple a generation of warriors.

    When Joy Kieffer buried her 34-year old son this past summer, it was the end of a long goodbye.

    Kieffer’s son, Sgt. Kevin Ash, enlisted in the Army Reserves at the age of 18. Over three deployments, he was exposed to 12 combat blasts, many of them roadside bombs. He returned home in 2012 a different man.

    Joy Kieffer: His whole personality had changed. I thought it was exposure to all of the things that he had seen, and he had just become harder. You know, but he was — he was not happy.

    Sharyn Alfonsi: So at this point, you’re thinking this decline, this change in my child is just that he’s been in war and he’s seen too much.

    Joy Kieffer: Right.

    Sharyn Alfonsi: Did he tell you about blasts that he experienced during that time?

    Joy Kieffer: Uh-huh.

    Sharyn Alfonsi: What did he–tell you?

    Joy Kieffer: That they shook him. And he was having blackouts. And — it frightened him.

    Ash withdrew from family and friends. He was angry. Depressed. Doctors prescribed therapy and medication, but his health began to decline quickly. By his 34th birthday, Sgt. Kevin Ash was unable to speak, walk or eat on his own.

    Sharyn Alfonsi: Looking back on it now, was there anything you feel like he could’ve done?

    Joy Kieffer: Uh-uh.

    Sharyn Alfonsi: Because?

    Joy Kieffer: Because it was– it– it was his brain. The thing I didn’t know was that his brain was continuing to die. I mean, before he went into the service he said, “you know, I could come back with no legs, or no arms, or even blind, or I could be shot, I could die,” but nobody ever said that he could lose his mind one day at a time.

    His final wish was to serve his country one last time by donating his brain to science — a gesture he thought would bring better understanding to the invisible wounds of war.

    Joy reached out to the VA-Boston University-Concussion Legacy Foundation Brain Bank where neuropathologist Dr. Ann McKee is leading the charge in researching head trauma and the degenerative brain disease CTE.

    McKee has spent fourteen years looking at the postmortem brains of hundreds of athletes who suffered concussions while playing their sport.

    Last summer, her findings shook the football world when she discovered CTE in the brains of 110 out of 111 deceased NFL players — raising serious concerns for those in the game today.

    And when Dr. McKee autopsied Patriots tight-end Aaron Hernandez who killed himself after being convicted of murder, she found the most severe case of CTE ever, in someone under 30.

    Now she’s seeing similar patterns in deceased veterans who experienced a different kind of head trauma — combat blasts. Of the 125 veterans’ brains Dr. Mckee’s examined, 74 had CTE.

    Sharyn Alfonsi: I can understand a football player who keeps, you know, hitting his head, and having impact and concussions. But how is it that a combat veteran, who maybe just experienced a blast, has the same type of injury?

    Dr. Ann McKee: This blast injury causes a tremendous sort of– ricochet or– or– a whiplash injury to the brain inside the skull and that’s what gives rise to the same changes that we see in football players, as in military veterans.

    Blast trauma was first recognized back in World War I. Known as ‘shell shock,’ poorly protected soldiers often died immediately or went on to suffer physical and psychological symptoms. Today, sophisticated armor allows more soldiers to walk away from an explosion but exposure can still damage the brain — an injury that can worsen over time.

    Dr. Ann McKee: It’s not a new injury. But what’s been really stumping us, I think, as– as physicians is it’s not easily detectable, right? It’s– you’ve got a lot of psychiatric symptoms– and you can’t see it very well on images of the brain and so it didn’t occur to us. And I think that’s been the gap, really, that this has been what everyone calls an invisible injury.

    Dr. Ann McKee: This is the world’s largest CTE brain bank.

    The only foolproof way to diagnose CTE is by testing a post-mortem brain.

    Sharyn Alfonsi: So these are full of hundreds of brains…

    Dr. Ann McKee: Hundreds of brains, thousands really…

    Researchers carefully dissect sections of the brain where they look for changes in the folds of the frontal lobes – an area responsible for memory, judgement, emotions, impulse control and personality.

    Dr. Ann McKee: Do you see there’s a tiny little hole there? That is an abnormality. And it’s a clear abnormality.

    Sharyn Alfonsi: And what would that affect?

    Dr. Ann McKee: Well, it’s part of the memory circuit. You can see that clear hole there that shouldn’t be there. It’s connecting the important memory regions of the brain with other regions. So that is a sign of CTE.

    Thin slivers of the affected areas are then stained and viewed microscopically. It’s in these final stages where a diagnosis becomes clear as in the case of Sgt. Kevin Ash.

    Sharyn Alfonsi: So this is Sergeant Ash’s brain?

    Dr. Ann McKee: Right. This is– four sections of his brain. And what you can see is– these lesions. The, and those lesions are CTE And they’re in very characteristic parts of the brain. They’re at the bottom of the crevice. That’s a unique feature of CTE.

    Sharyn Alfonsi: And in a healthy brain, you wouldn’t see any of those kind of brown spots?

    Dr. Ann McKee: No, no, it would be completely clear. And then when you look microscopically, you can see that the tau, which is staining brown and is inside nerve cells is surrounding these little vessels.

    Sharyn Alfonsi: And explain, what is the tau?

    Dr. Ann McKee: So tau is a protein that’s normally in the nerve cell. It helps with structure and after trauma, it starts clumping up as a toxin inside the nerve cell. And over time, and even years, gradually that nerve cell dies.

    Dr. Lee Goldstein has been building on Dr. McKee’s work with testing on mice.

    Inside his Boston University lab, Dr. Goldstein built a 27-foot blast tube where a mouse – and in this demonstration, a model – is exposed to an explosion equivalent to the IEDs used in Iraq and Afghanistan.

    Dr. Lee Goldstein: When it reaches about 25 this thing is going to go.

    Dr. Goldstein’s model shows what’s going on inside the brain during a blast. The brightly colored waves illustrate stress on the soft tissues of the brain as it ricochets back and forth within the skull.

    Dr. Lee Goldstein: What we see after these blast exposures, the animals actually look fine. Which is shocking to us. So they come out of what is a near lethal blast exposure, just like our military service men and women do. And they appear to be fine. But what we know is that that brain is not the same after that exposure as it was microseconds before. And if there is a subsequent exposure, that change will be accelerated. And ultimately, this triggers a neurodegenerative disease. And, in fact, we can see that really after even one of these exposures.

    Sharyn Alfonsi: The Department of Defense estimates hundreds of thousands of soldiers have experienced a blast like this. What does that tell you?

    Dr. Lee Goldstein: This is a disease and a problem that we’re going to be dealing with for decades. And it’s a huge public health problem. It’s a huge problem for the Veterans Administration. It’s a huge moral responsibility for all of us.

    A responsibility owed to soldiers like 34-year-old Sgt. Tom Bates.

    Sgt. Tom Bates: We were struck with a large IED. It was a total devastation strike.

    Bates miraculously walked away from a mangled humvee — one of four IED blasts he survived during deployments in Iraq and Afghanistan.

    Sharyn Alfonsi: Do you remember feeling the impact in your body?

    Sgt. Tom Bates: Yes. Yeah.

    Sharyn Alfonsi: What does that feel like?

    Sgt. Tom Bates: Just basically like getting hit by a train.

    Sharyn Alfonsi: And you were put back on the frontlines.

    Sgt. Tom Bates: Yes.

    Sharyn Alfonsi: And that was it?

    Sgt. Tom Bates: Uh-huh

    When Bates returned home in 2009, his wife Libby immediately saw a dramatic change.

    Libby Bates: I thought, “Something is not absolutely right here. Something’s going on. For him to just lay there and to sob and be so sad. You know, what do you do for that? How do I– how do I help him? He would look at me and say, “If it wasn’t for you, I would end it all right now.” You know, I mean, like, what do you– what do you do– and what do you say to somebody who says that? You know I love this man so much. And —

    Sharyn Alfonsi: You’re going to the VA, you’re getting help, but did you feel like you weren’t getting answers?

    Sgt. Tom Bates: Yes.

    Sharyn Alfonsi: And so you took it into your own hands and started researching?

    Sgt. Tom Bates: I knew the way everything had gone and how quick a lot of my neurological issues had progressed that something was wrong. And I just– I wanted answers for it.

    That led him to New York’s Mount Sinai Hospital where neurologist Dr. Sam Gandy is trying to move beyond diagnosing CTE only in the dead by using scans that test for the disease in the living.

    Dr. Sam Gandy: By having this during life, this now gives us for the first time the possibility of estimating the true prevalence of the disease. It’s important to estimate prevalence so that people can have some sense of what the risk is.

    In the past year, 50 veterans and athletes have been tested for the disease here. Tom Bates asked to be a part of it.

    That radioactive tracer – known as t807 – clings to those dead clusters of protein known as tau, which are typical markers of the disease.

    Through the course of a 20 minute PET scan, high resolution images are taken of the brain and then combined with MRI results to get a 360 degree picture of whether there are potential signs of CTE.

    Scan results confirmed what Tom and Libby had long suspected.

    On the right, we see a normal brain scan with no signs of CTE next to Tom’s brain where tau deposits, possible markers of CTE, are bright orange.

    Dr. Sam Gandy: Here these could be responsible for some of the anxiety and depression he’s suffered and we’re concerned it will progress.

    Sgt. Tom Bates: My hope is that this study becomes more prominent, and gets to more veterans, and stuff like that so we can actually get, like, a reflection of what population might actually have this.

    There is no cure for CTE.

    Dr. Gandy hopes his trial will lead to drug therapies so he can offer some relief to patients like Tom.

    Dr. Ann McKee believes some people may be at higher risk of getting the disease than others.

    While examining NFL star Aaron Hernandez’s brain she identified a genetic bio-marker she believes may have predisposed him to CTE.

    A discovery that could have far-reaching implications on the football field and battlefield.

    Sharyn Alfonsi: Do you think you will ever be your old self again?

    Sgt. Tom Bates: I don’t ever see me being my old self again. I think it’s just too far gone.

    Sharyn Alfonsi: So what’s your hope then?

    Sgt. Tom Bates: Just to not become worse than I am now.

    Since our story first aired, over 100 veterans have contacted Dr. Gandy to enroll in ongoing trials to identify whether they are living with CTE. And more than 300 have reached out to Dr. Mckee about donating their brains to research.

    Read the original article
     


    Ann C. McKee, chief of neuropathology at the VA Boston Healthcare System, which houses the world’s largest brain bank devoted to CTE research, examines a brain earlier this month.(Photo: Robert Deutsch, USA TODAY)

    Researchers close in on CTE diagnosis in living, one brain at a time

    By Nancy Armour, August 24, 2018, USA TODAY

    BOSTON – Submerged in chemicals in the stainless-steel bowl is the key to life and, researchers hope, death.

    It’s a human brain. That of a man who played college football in the 1950s, to be exact. His family donated his brain to get answers for themselves, but what’s found could lead to more answers about chronic traumatic encephalopathy, the devastating neurodegenerative disease linked to concussions and repetitive head trauma from football and other contact sports.

    “Our main objective, our overarching goal, is to help the people who are living. To be able to diagnose this disease during life,” says Ann McKee, chief of neuropathology at the VA Boston Healthcare System, which houses the world’s largest brain bank devoted to CTE research.

    “If we can diagnose it, we can monitor it and test therapies to see if they’re effective in treating this disease,” says McKee, director of the CTE Center at Boston University’s School of Medicine. “It would really dramatically increase our ability to point out genetic susceptibilities for this. We’d be able to look at how much is too much in certain individuals or certain positions in certain sports.”

    As another football season begins, it inevitably leads to questions and fears about head trauma and its long-term damage. How many hits are too many? What can parents do to protect their children or players do to protect themselves? Are athletes in certain sports more susceptible?

    Most important, which athletes will develop CTE – or Parkinson’s or ALS (amyotrophic lateral sclerosis) – and why?

    The answers will come from brains such as the one McKee dissected this month, when USA TODAY Sports toured the brain bank.

    The brain bank has more than 500 brains, most of them donated by former athletes or their families who suspected CTE because of mood swings, behavioral changes, depression or dementia. Of those brains, more than 360 had CTE, McKee says.

    SEARCHING FOR CLUES

    The arrival of a brain sets two teams in motion. One set of clinicians talks to the family to find out more about the donors. Did they play any sports? If so, what and for how long? When did they start? Did they experience any other kind of head trauma, say from an automobile accident, domestic violence or military service? Did they have drug or alcohol problems? How did their mental health change, and when did that occur?

    Separately, and usually without any information about the person whose brain it was, McKee and her researchers study the brain. It is cut in half, and one half is stored in a minus-80-degree freezer, so it will be available for molecular, genetic and biochemical studies.

    The other half is then photographed and sectioned. After removing the brain stem, McKee uses what looks like a bread knife to cut slices of the brain about a quarter-inch thick.


    Ann C. McKee slices the brain into segments about a quarter-inch thick as part of in-depth, time consuming research on the organ. McKee hopes the work will unlock answers to CTE. (Photo: Robert Deutsch, USA TODAY)
     
    Simply by looking at the brain, McKee can tell a few things. The brain of this man, who was in his 80s when he died, has shrunk, noticeably smaller than it should be for a man who once played football. The folds of the brain, normally pressed tightly against one another, are loose and have gaps between them, some large enough that the tip of a finger could be inserted.

    She points to the ventricles, chambers in the middle of his brain that are filled with fluid during life. They should be small, but these are “just gigantic.”

    “As the brain shrinks, they expand. What this indicates is there’s been enormous shrinkage of the brain,” McKee says. “Those are huge.”

    The hippocampus, a section in the middle of the brain that controls memory, is small but not abnormally so for a man in his 80s. If it was, that could be an indication of Alzheimer’s. But a membrane that runs from one side of the brain to the other, normally thick like a rubber band, has shrunk. In some spots, it’s almost invisible.

    “This is looking more like frontal predominant atrophy, and that could mean CTE because Alzheimer’s almost always affects the hippocampus,” McKee says. “At this point, I always want to know, ‘What is it? Let’s look under the microscope.’ But you have to wait.”

    CTE can’t be seen by the naked eye, and it takes at least three weeks to prepare slides of the brain tissue.


     
    CTE is caused by tau, a protein in the brain released as a result of head trauma. When tau clumps together, it damages brain cells and can change the brain’s function. Though tau causes Alzheimer’s, McKee says, the tau that causes CTE looks distinctly different.

    Under a microscope, it can be seen in telltale brown spots.

    “CTE is very focal. In fact, in its early stages, it’s in the crevices. It just piles up. And that’s around blood vessels,” McKee says. “That’s very different. Alzheimer’s never does that.”

    As CTE progresses, those clusters or clumps of tau will spread, and the disease will become more severe. That’s why, in the early stages of disease, stages 1 and 2, the symptoms usually relate to behavioral changes or mood swings. In stages 3 and 4, the disease is exhibited in memory loss.

    “We think there may be more pathology in the young players than we’re appreciating just with the tau protein,” McKee says. “We think there’s maybe white matter structural changes or maybe inflammatory changes that are responsible for that loss of control, which is so difficult for the individuals.”

    ‘EVERY CASE IS A MYSTERY’

    Once the slides have been examined, the pathologists and clinicians will come together for a conference. At this point, neither knows what the other does. The clinicians detail what they’ve learned about the brain donor’s history and suggest a diagnosis. The pathologists will then say whether the brain tissue confirms it.

    “Every case is a mystery,” McKee says. “It’s not the same way you usually solve a mystery. I solve the pathology first, and then you go back and find out (the history). And then you try and put the two together.”

    Some former players and their families once were reluctant to donate their brains, but that stigma largely has disappeared. So much so that McKee said brains arrive at the Boston bank almost every day.

    Though that lengthens the time it takes to reach a definitive diagnosis, it will shorten the time before a living diagnosis can be found. In addition to the work done in her lab, McKee shares tissue samples with researchers around the world.

    “What we want to do is establish the risk, educate people, educate parents, educate players,” McKee says. “So if they’re unwilling to risk that future self, if they’re unwilling to take that risk because it’s too high for them personally, we want to give them enough data so they can make a very sound and wise decision.”

    When that day comes, it will change sports forever.

    Read the original article
     

    • 1
    • 2

    Serving the Brain Injury Community for 30+ years